Activation of several protein kinases is mediated, at least in part, by phosphorylation of conserved Thr or Tyr residues located in a variable loop region, near the active site. In certain kinases, this activation loop also controls access of peptide substrates to the active site. In the corresponding region of the epidermal growth factor (EGF) receptor, a potential phosphorylation site, Tyr-845, does not appear to have a major regulatory role. In order to find out whether this variable loop can modulate the peptide phosphorylation and self-phosphorylation activities of the EGF receptor kinase, we investigated the role of residues around Tyr-845, using site-directed mutagenesis. Multiple sequence alignment showed that residues Glu-842, Glu-844 and His-846 are conserved or nearly conserved in eight members of the EGF receptor family. Mutants Glu-842-->Ser, Glu-844-->Gln and His-846-->Ala were expressed in the baculovirus/insect cell system, purified to near-homogeneity and characterized with respect to their peptide phosphorylation and self-phosphorylation activities. All three mutants were active, and these changes did not affect ATP binding directly. However, all mutations increased the Km(app.) for peptide substrates and MnATP in peptide phosphorylation reactions. The Vmax. for the phosphorylation of peptide RREELQDDYEDD was unaltered, but the Vmax. for self-phosphorylation (with variable [MnATP]) decreased 4-, 2- and 7-fold for mutants Glu-842-->Ser, Glu-844-->Gln and His-846-->Ala respectively, compared with the wild-type. These results suggest that binding of this peptide restored an optimal conformation at the active site that might be impaired by the mutations. A study of the dependence of initial rates of self-phosphorylation on cytoplasmic domain concentration showed that the order of reaction increased with the progress of self-phosphorylation. Both pre-phosphorylation and high concentrations of ammonium sulphate restored maximal or near-maximal levels of self-phosphorylation in the mutants, possibly through compensating conformational changes. A plausible homology model, based on the cyclic AMP-dependent protein kinase catalytic subunit, accommodated the sequence Glu-841-Glu-Lys-Glu as an insertion in the peptide binding loop at the edge of the active site cleft. The model suggests that Glu-844 and His-846 may participate in H-bonding interactions, thus stabilizing the active site region, while Glu-842 does not appear to interact with regions of the catalytic core.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
May 1995
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkAdvertising
Research Article|
May 15 1995
An investigation of the role of Glu-842, Glu-844 and His-846 in the function of the cytoplasmic domain of the epidermal growth factor receptor Available to Purchase
J F Timms;
J F Timms
1Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, U.K.
Search for other works by this author on:
M E M Noble;
M E M Noble
1Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, U.K.
Search for other works by this author on:
M Gregoriou
M Gregoriou
1Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, The Rex Richards Building, South Parks Road, Oxford OX1 3QU, U.K.
Search for other works by this author on:
Publisher: Portland Press Ltd
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© 1995 The Biochemical Society, London
1995
Biochem J (1995) 308 (1): 219–229.
Citation
J F Timms, M E M Noble, M Gregoriou; An investigation of the role of Glu-842, Glu-844 and His-846 in the function of the cytoplasmic domain of the epidermal growth factor receptor. Biochem J 15 May 1995; 308 (1): 219–229. doi: https://doi.org/10.1042/bj3080219
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |