Type I collagen is the most abundant component of the extracellular matrix of human connective tissues. We have examined the effect of okadaic acid (OA), an inhibitor of phosphoserine- and-phosphothreonine-specific protein phosphatases 1 and 2A, on type I collagen gene expression by fibroblasts in culture. Treatment of human skin fibroblasts with OA potently reduced type I and type III collagen mRNA levels, maximally by over 90%. The inhibitory effect of OA on type I and III collagen mRNA abundance was not prevented by cycloheximide, and was not affected by simultaneous treatment with dexamethasone or retinoic acid. OA also abrogated the enhancing effect of transforming growth factor-beta (TGF-beta) on type I and III collagen mRNA levels. Treatment of transiently transfected NIH-3T3 fibroblasts with OA suppressed the activity of a 3.5 kb human pro alpha 2(I) collagen promoter/chloramphenicol acetyltransferase construct maximally, by 70%. In addition, OA treatment of NIH-3T3 cells abrogated enhancement of pro alpha 2(I) collagen promoter activity by TGF-beta. These results indicate that protein phosphatases 1 and 2A have an important role as positive regulators of type I and III collagen gene expression. The results also suggest that selective inhibition of activity of protein phosphatases 1 and 2A may offer a novel approach for preventing excessive collagen accumulation in fibrotic disorders.

This content is only available as a PDF.
You do not currently have access to this content.