Purification and biophysical characterization of mitochondrial creatine kinase (Mi-CK) from sperm of the sea urchin Psammechinus miliaris, as well as gel-permeation chromatography of human heart Mi-CK demonstrate that these two Mi-CK isoenzymes form highly symmetrical octameric molecules with an M(r) of approx. 350,000, a value similar to that found for all other Mi-CK isoenzymes investigated so far. The absolute evolutionary conservation of this oligomeric form from sea urchins to mammals points both to its essentiality for Mi-CK function and to an important role of octameric Mi-CK in the energy metabolism of tissues and cells with high and fluctuating energy demands. To investigate whether a similar physiological principle also operates in an even more distantly related animal phylum, the arginine kinase (ArgK) isoenzyme system of Drosophila flight muscle was investigated with two independent subcellular fractionation procedures and subsequent analysis of the fractions by SDS/PAGE, immunoblotting and native isoenzyme electrophoresis. In contrast with a previous report [Munneke and Collier (1988) Biochem. Genet. 26, 131-141], strong evidence against the occurrence of a Mi-ArgK isoenzyme in Drosophila was obtained. The findings of the present study are discussed in the context of CK and ArgK function in general and of structural and bioenergetic differences between vertebrate striated muscles and arthropod flight muscles.

This content is only available as a PDF.
You do not currently have access to this content.