Nicotinate adenine dinucleotide phosphate (NAADP) was recently identified [Lee and Aarhus (1995) J. Biol. Chem. 270, 2152-2157; Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] as a potent Ca(2+)-releasing agent in sea urchin egg homogenates. NAADP triggered Ca2+ release by a mechanism that was distinct from inositol 1,4,5-trisphosphate (InsP3)- and cyclic ADP-ribose (cADPR)-induced Ca2+ release. When NAADP was microinjected into intact sea urchin eggs it induced a dose-dependent increase in cytoplasmic free Ca2+ which was independent of the extracellular [Ca2+]. The Ca2+ waves elicited by microinjections of NAADP originated at the site of injection and swept across the cytosol. As previously found in sea urchin egg homogenates, NAADP-induced Ca2+ release in intact eggs was not blocked by heparin or by prior desensitization to InsP3 or cADPR. Thio-NADP, a specific inhibitor of the NAADP-induced Ca2+ release in sea urchin homogenates [Chini, Beers and Dousa (1995) J. Biol. Chem. 270, 3116-3223] blocked NAADP (but not InsP3 or cADPR) injection-induced Ca2+ release in intact sea urchin eggs. Finally, fertilization of sea urchin eggs abrogated subsequent NAADP-induced Ca2+ release, suggesting that the NAADP-sensitive Ca2+ pool may participate in the fertilization response. This study demonstrates that NAADP acts as a selective Ca(2+)-releasing agonist in intact cells.

This content is only available as a PDF.
You do not currently have access to this content.