Short-term (less than 2 h) glucose stimulation of isolated pancreatic islets specifically increases the biosynthesis of proinsulin and its converting enzymes PC2 and PC3 at the translation level. To determine whether gene expression of PC2 and PC3 was also regulated by longer-term (more than 6 h) glucose stimulation along with that of preproinsulin, studies were performed with the βTC3 insulin-producing cell line. By Northern blot analysis, glucose maintained PC2 and PC3 mRNA levels in parallel with those of preproinsulin. After 48 h, mRNA levels of preproinsulin, PC2 and PC3 were, respectively, 2.9 (P < 0.05), 3.0 (P < 0.005) and 5.3 (P < 0.001) times greater in the presence of glucose than in βTC3 cells cultured in the absence of glucose. Glucose-regulated PC2 and PC3 gene expression, like that of preproinsulin, was maximal at glucose concentrations above 5.5 mM. Studies of mRNA stability showed that the half-lives of PC2 (9 h) and PC3 (5 h) mRNA were much shorter than that of preproinsulin mRNA (over 24 h), but little effect of glucose on stability of these mRNAs was observed. Nuclear run-off analysis indicated that transcription of preproinsulin, PC2 and PC3 was modestly induced after 1 h exposure to 16.7 mM glucose. Therefore preproinsulin, PC2 and PC3 mRNA levels in βTC3 cells were most probably maintained at the level of gene transcription. In contrast, elevation of cyclic AMP by forskolin had no effect on mRNA levels or gene transcription of preproinsulin, PC2 and PC3, despite a cyclic-AMP-induced phosphorylation of the cyclic AMP response element binding protein that correlated with a marked increase in cJun and cFos gene transcription in the same β-cells. These results suggest that preproinsulin, PC2 and PC3 gene transcription can be specifically glucose-regulated in a mechanism that is unlikely to involve a key role for cyclic AMP. The co-ordinate increase in PC2 and PC3 mRNA levels with that of preproinsulin mRNA in response to chronic glucose represents a long-term means of catering for an increased demand on proinsulin conversion.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
January 1996
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
Research Article|
January 01 1996
Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing β TC3 cells Available to Purchase
George T. SCHUPPIN;
George T. SCHUPPIN
1E. P. Joslin Research Laboratory, Joslin Diabetes Center, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, U.S.A.
Search for other works by this author on:
Christopher J. RHODES
Christopher J. RHODES
*
*To whom correspondence should be addressed at Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, U.S.A.
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
April 20 1995
Revision Received:
August 21 1995
Accepted:
August 30 1995
Online ISSN: 1470-8728
Print ISSN: 0264-6021
The Biochemical Society, London © 1996
1996
Biochem J (1996) 313 (1): 259–268.
Article history
Received:
April 20 1995
Revision Received:
August 21 1995
Accepted:
August 30 1995
Citation
George T. SCHUPPIN, Christopher J. RHODES; Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing β TC3 cells. Biochem J 1 January 1996; 313 (1): 259–268. doi: https://doi.org/10.1042/bj3130259
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
![]() View past webinars > |