The transport properties of the nucleobase hypoxanthine were examined in the human umbilical vein endothelial cell line ECV 304. Initial rates of hypoxanthine influx were independent of extracellular cations: replacement of Na+ with Li+, Rb+, N-methyl-d-glucamine or choline had no significant effect on hypoxanthine uptake by ECV 304 cells. Kinetic analysis demonstrated the presence of a single saturable system for the transport of hypoxanthine in ECV 304 cells with an apparent Km of 320±10 μM and a Vmax of 5.6±0.9 pmol/106 cells per s. Hypoxanthine uptake was inhibited by the nucleosides adenosine, uridine and thymidine (apparent Ki 41±6, 240±27 and 59±8 μM respectively) and the nucleoside transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole (apparent Ki 2.5±0.3, 11±3 and 0.16±0.006 μM respectively), whereas the nucleobases adenine, guanine and thymine had little effect (50% inhibition at > 1 mM). ECV 304 cells were also shown to transport adenosine via both the NBMPR-sensitive and -insensitive nucleoside carriers. Hypoxanthine specifically inhibited adenosine transport via the NBMPR-insensitive system in a competitive manner (apparent Ki 290±14 μM). These results indicate that hypoxanthine entry into ECV 304 endothelial cells is mediated by the NBMPR-insensitive nucleoside carrier present in these cells.

This content is only available as a PDF.
You do not currently have access to this content.