The cytosolic β-glucosidase (EC present in the livers of mammalian species is distinguished by its broad specificity for sugars and its preference for hydrophobic aglycones. We purified the cytosolic β-glucosidase from guinea pig liver and sequenced 142 amino acid residues contained within 12 trypsin digest fragments. Using degenerate oligonucleotide primers deduced from the peptide sequences, a 622 bp cytosolic β-glucosidase cDNA was amplified by reverse-transcriptase PCR, using total guinea pig liver RNA as template. The ‘rapid amplification of cDNA ends (RACE)’ method [Frohman (1993) Methods Enzymol. 218, 340–356] was used to synthesize the remaining segments of the full-length cDNA. The complete cDNA contained 1671 nucleotides with an open reading frame coding for 469 amino acid residues. The amino acid sequence deduced from the cDNA sequence included the amino acid sequences of all 12 trypsin digest fragments derived from the purified enzyme. Amino acid sequence analysis indicates that the guinea pig liver cytosolic β-glucosidase is a Family 1 β-glycosidase and that it is most closely related to mammalian lactase-phlorizin hydrolase. These results suggest that the cytosolic β-glucosidase and lactase-phlorizin hydrolase diverged from a common evolutionary precursor.

This content is only available as a PDF.
You do not currently have access to this content.