The properties of Ca2+-ATPase purified and reconstituted from rabbit skeletal sarcoplasmic reticulum (SR) has been studied in comparison with the preparations obtained by the commonly used detergent poly(oxyethylene)8-lauryl ether (C12E8) and the bile salt detergents cholate and deoxycholate. 1,2-Diheptanoyl-sn-phosphatidylcholine (DHPC) has been shown to be excellent for solubilizing a wide variety of membrane proteins [Kessi, Poiree, Wehrli, Bachofen, Semenza and Hauser (1994) Biochemistry 33, 10825–10836]. The DHPC method consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than the methods with C12E8, cholate, or deoxycholate. DHPC and C12E8 were superior to cholate and deoxycholate in active enzyme yields and specific activity. DHPC-solubilized Ca2+-ATPase purified on a density gradient retained the E1Ca–E1*Ca conformational transition, whereas the enzyme from the C12E8 purification did not retain this transition. The coupling of Ca2+ transported to ATP hydrolysed in the DHPC-purified enzyme was maximal and matched the values obtained with native SR, whereas the coupling was much lower for the C12E8-purified enzyme. The specific activity of Ca2+-ATPase reconstituted into dioleoylphosphatidylcholine vesicles with DHPC was up to 2-fold greater than that achieved with C12E8, and is comparable to that measured in the native SR. Finally, the dissociation of Ca2+-ATPase into monomers by DHPC preserved the ATPase activity, whereas similar dissociation by C12E8 gave only one-sixth the activity of that obtained with DHPC. These studies show that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 in significant ways, making it a preparation suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of membrane proteins.

This content is only available as a PDF.
You do not currently have access to this content.