NtcA has been identified as a nitrogen-responsive regulatory protein required for nitrogen assimilation and heterocyst differentiation in cyanobacteria. It is proposed that NtcA functions through the formation of DNA-protein complexes with its specific target sequence within the promoter regions of the regulated genes. In vitro, NtcA of Anabaena PCC 7120 binds to upstream regions of the genes whose products are involved in nitrogen assimilation, but also to the upstream region of rbcLS (carbon-fixation gene), xisA (encoding a site-specific recombinase expressed during heterocyst differentiation) and ntcA (encoding NtcA itself). However, the mechanism by which NtcA serves as a critical regulator for such diverse processes is not understood. With the use of electrophoretic mobility shift assays, NtcA from Anabaena PCC 7120 was here shown to interact with the promoter sequence of the gor gene, encoding glutathione reductase, thereby providing a novel example of NtcA's acting as a repressor, previously found only for the rbcLS gene. Furthermore we demonstrate that the binding of DNA by NtcA is regulated in vitro by a redox-dependent mechanism involving cysteine residues of the NtcA protein. These findings suggest that NtcA is a transcriptional regulator that responds not only to the nitrogen status but also to the cellular redox status, a function that might be particularly significant during heterocyst differentiation.

This content is only available as a PDF.
You do not currently have access to this content.