Escherichia coli-expressed chicken-liver glutathione S-transferase, cGSTA1-1, displays high ethacrynic acid (EA)-conjugating activity. Molecular modelling of cGSTA1-1 with EA in the substrate binding site reveals that the side chain of Phe-111 protrudes into the substrate binding site and possibly interacts with EA. Replacement of Phe-111 with alanine resulted in an enzyme (F111A mutant) with a 4.5-fold increase in EA-conjugating activity (9.2 mmol/min per mg), and an incremental Gibbs free energy (ΔΔG) of 4.0 kJ/mol lower than that of the wild-type cGSTA1-1. Two other amino acid residues that possibly interact with EA are Ser-208 and Lys-15. Substitution of Ser-208 with methionine generated a cGSTA1-1(F111AS208M) double mutant that has low EA-conjugating activity (2.0 mmol/min per mg) and an incremental Gibbs free energy of +3.9 kJ/mol greater than the cGSTA1-1(F111A) single mutant. The cGSTA1-1(F111A) mutant, with an additional Lys-15-to-leucine substitution, lost 90% of the EA-conjugating activity (0.55 mmol/min per mg). The Km values of the cGSTA1-1(F111A) and cGSTA1-1(F111AK15L) mutants for EA are nearly identical. The wild-type cGSTA2-2 isoenzyme has a low EA-conjugating activity (0.56 mmol/min per mg). The kcat of this reaction can be increased 2.5-fold by substituting Arg-15 and Glu-104 with lysine and glycine respectively. The KmEA of the cGSTA2-2(R15KE104G) double mutant is nearly identical with that of the wild-type enzyme. Another double mutant, cGSTA2-2(E104GL208S), has a KmEA that is 3.3-fold lower and a kcat that is 1.8-fold higher than that of the wild-type enzyme. These results, taken together, illustrate the interactions of Lys-15 and Ser-208 on cGSTA1-1 with EA.

This content is only available as a PDF.
You do not currently have access to this content.