Cytosolic free Ca2+ has been shown to have both activating and inhibitory effects upon the inositol (1,4,5) trisphosphate receptor (InsP3R) during intracellular Ca2+ release. The effects of cytosolic free Ca2+ on the InsP3R have already been monitored using cerebellar microsomes (containing InsP3R) incorporated into planar lipid bilayers [Bezprozvanny, Watras and Ehrlich (1991) Nature (London) 351, 751-754]. In these experiments the open probability of the channel exhibited a ‘bell-shaped Ca2+ dependence’. However, this has only been seen when the receptor is in the presence of its native membrane (e.g. microsomal vesicles). Using solubilized, purified InsP3R incorporated into planar lipid bilayers using the ‘tip-dip’ technique, investigations were carried out to see if the same effect was seen in the absence of the native membrane. Channel activity was observed in the presence of 4 μM InsP3 and 200 nM free Ca2+. Mean single channel current was 2.69 pA and more than one population of lifetimes was observed. Two populations had mean open times of approx. 9 and 97 ms. Upon increasing the free [Ca2+] to 2 μM, the mean single channel current decreased slightly to 2.39 pA, and the lifetimes increased to 30 and 230 ms. Elevation of free [Ca2+] to 4 μM resulted in a further decrease in mean single channel current to 1.97 pA as well as a decrease in lifetime to approx. 8 and 194 ms. At 10 μM free [Ca2+] no channel activity was observed. Thus, with purified receptor in artificial bilayers, free [Ca2+] on the cytosolic face of the receptor has major effects on channel behaviour, particularly on channel closure, although inhibition of channel activity is not seen until very high free [Ca2+] is reached.

This content is only available as a PDF.
You do not currently have access to this content.