Treatment of primary rat epididymal adipocytes or 3T3-L1 adipocytes with various agents which increase cAMP led to the phosphorylation of eukaryotic translation elongation factor-2 (eEF-2). The increase in eEF-2 phosphorylation was a consequence of the activation of eEF-2 kinase (eEF-2K), which is a Ca2+/calmodulin-dependent kinase. eEF-2K was shown to be essentially inactive at less than 0.1 µM free Ca2+ when measured in cell-free extracts. Treatment of adipocytes with isoproterenol induced Ca2+-independent eEF-2K activity, and an 8–10-fold activation of eEF-2K was observed at Ca2+ concentrations of less than 0.1 µM. Increased cAMP in 3T3-L1 adipocytes led to the inhibition of total protein synthesis and decreased the rate of polypeptide-chain elongation. We also show that the phosphorylation of eEF-2 and the activity of eEF-2K are insulin-regulated in adipocytes. These results demonstrate a novel mechanism for the control of protein synthesis by hormones which act by increasing cytoplasmic cAMP.

This content is only available as a PDF.
You do not currently have access to this content.