The biogenesis of connexins and their assembly into functional gap junction hemichannels (connexons) was studied with the use of a cell-free transcription/translation system. Velocity sedimentation on sucrose gradients showed that a small proportion of connexin (Cx) 26 and Cx32 that were co-translationally translocated into microsomes were oligomers of Cx26 and Cx32. Chemical cross-linking studies showed that these corresponded to hexameric connexons. Reconstitution of connexons synthesized in vitro into liposomes induced permeability properties consistent with the view that open gap junction hemichannels were produced. By using an immunoprecipitation approach, a simultaneous translation of Cx26 and Cx32 incorporated into microsomes resulted in homomeric connexons. However, supplementation of the translation system in vitro with liver Golgi membranes produced heteromeric connexons constructed of Cx32 and Cx26, and also resulted in an increased oligomerization especially of Cx32. All of the connexins analysed were inserted co-translationally into canine pancreatic microsomal membranes. In addition, Cx26 and Cx43, but not Cx32, were also inserted into microsomal membranes post-translationally. Analysis of various connexin constructs in which the cytoplasmic carboxy tails were transposed, the cytoplasmic tail of Cx43 was truncated or a reporter protein, aequorin, was attached to the C-terminus showed that tail length was not the major determinant of the post-translational membrane insertion of connexins.

This content is only available as a PDF.
You do not currently have access to this content.