The ubiquitin-proteasome pathway is the principal mechanism for the degradation of short-lived proteins in eukaryotic cells. Here we examine the possibility that ubiquitin-proteasome is involved in regulating the levels of Bcl-2, which is abundantly expressed in M-07e cells, a granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent human leukaemic cell line. Apoptosis in M-07e cells, induced by GM-CSF withdrawal, was associated with a gradual cleavage of Bcl-2 into a 22 kDa fragment. Treatment of M-07e cells with benzyloxycarbonyl-Leu-Leu-L-leucinal (Z-LLL-CHO; MG-132), a reversible ubiquitin-proteasome inhibitor, markedly accelerated the cleavage of Bcl-2 and promoted cell death through the apoptotic pathway. The cleavage of Bcl-2 was inhibited by a caspase-3 (CPP32)-specific inhibitor [acetyl-Asp-Glu-Val-Asp-CHO (DEVD-CHO)] but not caspase 1 inhibitor (acetyl-Tyr-Val-Ala-Asp-CHO), suggesting that Bcl-2 is a proteolytic substrate of a caspase-3-like protease activated during apoptosis. The simultaneous addition of recombinant human GM-CSF (rhGM-CSF) to M-07e cultures delayed the activation of caspase 3 and Bcl-2 cleavage triggered by Z-LLL-CHO, suggesting that the activation of the GM-CSF signalling pathway can partly overcome the apoptotic effect induced by Z-LLL-CHO. Apoptosis induced by inhibition of the proteasome pathway was verified in studies with lactacystin, a highly specific and irreversible proteasome inhibitor. Lactacystin-induced apoptosis in M-07e cells was remarkably similar to that induced by Z-LLL-CHO, which included caspase 3 activation, cleavage of Bcl-2 into a 22 kDa fragment and, ultimately, cell death. These results showed that inhibition of the ubiquitin-proteasome pathways can lead to the activation of a DEVD-CHO-sensitive caspase and induces Bcl-2 cleavage, which might have a role in mediating apoptosis in M-07e cells.

This content is only available as a PDF.
You do not currently have access to this content.