Centaurin-α is a 46 kDa in vitro binding protein for the lipid second messenger PtdIns(3,4,5)P3. In this report we have addressed whether centaurin-α1, a human homologue of centaurin-α, binds PtdIns(3,4,5)P3in vivo and furthermore, identified a potential physiological function for centaurin-α1. Using confocal microscopy of live PC12 cells, transiently transfected with a chimera of green fluorescent protein (GFP) fused to the N-terminus of centaurin-α1 (GFP-centaurin-α1), we demonstrated the rapid plasma membrane recruitment of cytosolic GFP-centaurin-α1 following stimulation with either nerve growth factor or epidermal growth factor. This recruitment was dependent on the centaurin-α1 pleckstrin homology domains and was blocked by the PtdIns(4,5)P2 3-kinase (PI 3-kinase) inhibitors wortmannin (100 nM) and LY294002 (50 μM), and also by co-expression with a dominant negative p85. Functionally, we demonstrated that centaurin-α1 could complement a yeast strain deficient in the ADP-ribosylation factor (ARF) GTPase-activating protein Gcs1; a complementation that was blocked by mutagenesis of conserved cysteine residues within the ARF GTPase-activating protein analogous domain of centaurin-α1. Taken together, our data demonstrated that centaurin-α1 could potentially function as an ARF GTPase-activating protein that, on agonist stimulation, was recruited to the plasma membrane possibly through an ability to interact with PtdIns(3,4,5)P3.

This content is only available as a PDF.
You do not currently have access to this content.