Advanced glycation end product (AGE) is important in the pathogenesis of diabetic nephropathy, which is characterized by cellular hypertrophy/hyperplasia leading to renal fibrosis. However, the signal transduction pathways of AGE remain poorly understood. The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway has been associated with cellular proliferation in some extra-renal cells. Because interstitial fibroblast proliferation might be important in renal fibrosis, we studied the role of the JAK/STAT pathway in NRK-49F (normal rat kidney fibroblast) cells cultured in AGE/BSA and non-glycated BSA. We showed that AGE dose-dependently (10-200 μg/ml) increased cellular mitogenesis in NRK-49F cells at 5 and 7 days. However, cellular mitogenesis was unaffected by the simultaneous presence of BSA. Regarding the JAK/STAT pathway, AGE (100 μg/ml) induced tyrosine phosphorylation of JAK2 (but not JAK1, JAK3 or TYK2) at 15-60 min; it also induced the tyrosine phosphorylation of STAT1 and STAT3 at 1-2 h and 0.5-4 h respectively. Being a transcription factor, AGE also increased the DNA-binding activities of STAT1 and STAT3 AG-490 (a specific JAK2 inhibitor) (5 μM) inhibited tyrosine phosphorylation of JAK2 and the DNA-binding activities of STAT1 and STAT3. The same results were obtained by using specific ‘decoy’ oligodeoxynucleotides (ODNs) that prevented STAT1 and STAT3 from binding to DNA. Meanwhile, the STAT1 or STAT3 decoy ODN and AG-490 were effective in reversing AGE-induced cellular mitogenesis. We concluded that the JAK2-STAT1/STAT3 signal transduction pathway is necessary for AGE-induced cellular mitogenesis in NRK-49F cells.

This content is only available as a PDF.
You do not currently have access to this content.