The AMP-activated protein kinase (AMPK) cascade is activated by an increase in the AMP/ATP ratio within the cell. AMPK is regulated allosterically by AMP and by reversible phosphorylation. Threonine-172 within the catalytic subunit (α) of AMPK (Thr172) was identified as the major site phosphorylated by the AMP-activated protein kinase kinase (AMPKK) in vitro. We have used site-directed mutagenesis to study the role of phosphorylation of Thr172 on AMPK activity. Mutation of Thr172 to an aspartic acid residue (T172D) in either α1 or α2 resulted in a kinase complex with approx. 50% the activity of the corresponding wild-type complex. The activity of wild-type AMPK decreased by greater than 90% following treatment with protein phosphatases, whereas the activity of the T172D mutant complex fell by only 10-15%. Mutation of Thr172 to an alanine residue (T172A) almost completely abolished kinase activity. These results indicate that phosphorylation of Thr172 accounts for most of the activation by AMPKK, but that other sites are involved. In support of this we have shown that AMPKK phosphorylates at least two other sites on the α subunit and one site on the β subunit. Furthermore, we provide evidence that phosphorylation of Thr172 may be involved in the sensitivity of the AMPK complex to AMP.

This content is only available as a PDF.
You do not currently have access to this content.