Vitamin C plays an important role in neutralizing toxic free radicals formed during oxidative metabolism or UV exposure of human skin. This study was performed to investigate the mechanisms that regulate the homoeostasis of vitamin C in HaCaT cells by identifying the events involved in the transport and in the reduction of dehydroascorbic acid. Dehydroascorbic acid accumulated to a greater extent and faster compared with ascorbic acid; its transport appeared to be mediated by hexose transporters and was entirely distinct from ascorbic acid transport. Dehydroascorbate reductase activity was unaffected by glutathione depletion, although it was sensitive to thiol protein reagents. These observations, as well as the subcellular distribution of this enzymic activity and the cofactor specificity, indicate that thioredoxin reductase and lipoamide dehydrogenase play an important role in this reduction process. HaCaT cells were able to enhance their dehydroascorbic acid reductase activity in response to oxidative stress.

This content is only available as a PDF.
You do not currently have access to this content.