The cell-free activation of human neutrophil NADPH oxidase (O2--generating enzyme) is enhanced by actin [Morimatsu, Kawagoshi, Yoshida and Tamura (1997) Biochem. Biophys. Res. Commun. 230, 206-210]. In an attempt to elucidate the mechanism, we examined the effect of actin-depolymerizing agents on the duration of NADPH oxidase in a cell-free system. The addition of DNase I, an F-actin-depolymerizing protein, caused an accelerated deactivation of the oxidase. The deactivation was also facilitated by latrunculin A, a sponge toxin that depolymerizes F-actin. Exogenously added actin prevented the deactivation by DNase I or latrunculin A, whereas EDTA accelerated a dilution-induced deactivation of the oxidase and Mg2+ ions retarded it. The stability in dilution was found to correlate well with free Mg2+ concentration. Estimation of F-actin in the system showed that F-actin increased during the oxidase activation and that DNase I or EDTA decreased F-actin content in parallel with the activity. Treatment of the cell-free mixture with a chemical cross-linker prevented the deactivation and F-actin decrease by EDTA. Taken together, these results suggest that actin filaments which grow during the activation of NADPH oxidase prolong the lifetime of the oxidase.

This content is only available as a PDF.
You do not currently have access to this content.