(1) Malonyl-CoA is thought to play a signalling role in fuel-selection in cardiac muscle, but the rate at which the concentration of this potential signal can be changed has not previously been investigated. (2) Rapid changes in cellular malonyl-CoA could be observed when rat cardiac myocytes were incubated in glucose-free medium followed by re-addition of 5mM glucose, or when cells were transferred from a medium containing glucose to a glucose-free medium. On addition of glucose, malonyl-CoA increased by 62% to a new steady-state level, at a rate of at least 0.4nmol/g dry wt. per min. The half-time of this change was less than 3min. After removal of glucose the malonyl-CoA content was estimated to decline by 0.43–0.55nmol/g dry wt. per min. (3) Malonyl-CoA decarboxylase (MDC) is a possible route for disposal of malonyl-CoA. No evidence was obtained for a cytosolic activity of MDC in rat heart where most of the activity was found in the mitochondrial fraction. MDC in the mitochondrial matrix was not accessible to extramitochondrial malonyl-CoA. However, approx. 16% of the MDC activity in mitochondria was overt, in a manner that could not be explained by mitochondrial leakage. It is suggested that this, as yet uncharacterized, overt MDC activity could provide a route for disposal of cytosolic malonyl-CoA in the heart. (4) No activity of the condensing enzyme for the fatty acid elongation system could be detected in any heart subcellular fraction using two assay systems. A previous suggestion [Awan and Saggerson (1993) Biochem. J. 295, 61–66] that this could provide a route for disposal of cytosolic malonyl-CoA in heart should therefore be abandoned.

This content is only available as a PDF.
You do not currently have access to this content.