Most transmembrane proteins are subjected to limited proteolysis by cellular proteases, and stimulation of cleavage of membrane proteins by calmodulin (CaM) inhibitors was recently shown. The present study investigated the ability of several CaM inhibitors to induce the proteolytic cleavage of the membrane type-1 matrix metalloproteinase (MT1-MMP) from the cell surface of highly invasive U-87 glioblastoma cells. Although no shedding of a soluble MT1-MMP form was induced by CaM inhibitors in the conditioned media, we showed that these inhibitors induced MT1-MMP proteolytic processing to the 43kDa membrane-bound inactive form that was not correlated with an increase in proMMP-2 activation but rather with an increase in tissue inhibitor of MMPs (TIMP)-2 expression levels. Moreover, this proteolytic processing was sensitive to marimastat suggesting the involvement of MMPs. Interestingly, CaM inhibitors antagonized concanavalin A- and cytochalasin D-induced proMMP-2 activation, and affected the cytoskeletal actin organization resulting in the loss of migratory potential of U-87 glioblastoma cells. Cytoplasmic tail-truncated MT1-MMP constructs expressed in COS-7 cells were also affected by CaM inhibitors suggesting that these inhibitors stimulated MT1-MMP proteolytic processing by mechanisms independent of the CaM–substrate interaction. We also propose that TIMP-2 acts as a negative regulator of MT1-MMP-dependent activities promoted by the action of CaM inhibitors in U-87 glioblastoma cells.

This content is only available as a PDF.
You do not currently have access to this content.