The functional role of three conserved amino acid residues in Proteus mirabilis glutathione S-transferase B1-1 (PmGST B1-1) has been investigated by site-directed mutagenesis. Crystallographic analyses indicated that Glu65, Ser103 and Glu104 are in hydrogen-bonding distance of the N-terminal amino group of the γ-glutamyl moiety of the co-substrate, GSH. Glu65 was mutated to either aspartic acid or leucine, and Ser103 and Glu104 were both mutated to alanine. Glu65 mutants (Glu65→Asp and Glu65→Leu) lost all enzyme activity, and a drastic decrease in catalytic efficiency was observed for Ser103→Ala and Glu104→Ala mutants toward both 1-chloro-2,4-dinitrobenzene and GSH. On the other hand, all mutants displayed similar intrinsic fluorescence, CD spectra and thermal stability, indicating that the mutations did not affect the structural integrity of the enzyme. Taken together, these results indicate that Ser103 and Glu104 are significantly involved in the interaction with GSH at the active site of PmGST B1-1, whereas Glu65 is crucial for catalysis.

This content is only available as a PDF.
You do not currently have access to this content.