We have previously reported three Caenorhabditis elegans genes (gly-12, gly-13 and gly-14) encoding UDP-N-acetyl-d-glucosamine:α-3-d-mannoside β1,2-N-acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid and complex N-glycan synthesis. GLY-13 was shown to be the major GnT I in worms and to be the only GnT I cloned to date which can act on [Manα1,6(Manα1,3)Manα1,6](Manα1,3)Manβ1, 4GlcNAcβ1,4GlcNAc-R, but not on Manα1,6(Manα1,3)Manβ1-O-R substrates. We now report the kinetic constants, bivalent-metal-ion requirements, and optimal pH, temperature and Mn2+ concentration for this unusual enzyme. C. elegans glycoproteins are rich in oligomannose (Man6–9GlcNAc2) and ‘paucimannose’ Man3–5GlcNAc2(±Fuc) N-glycans, but contain only small amounts of complex and hybrid N-glycans. We show that the synthesis of paucimannose Man3GlcNAc2 requires the prior actions of GnT I, α3,6-mannosidase II and a membrane-bound β-N-acetylglucosaminidase similar to an enzyme previously reported in insects. The β-N-acetylglucosaminidase removes terminal N-acetyl-d-glucosamine from the GlcNAcβ1, 2Manα1,3Manβ- arm of Manα1,6(GlcNAcβ1,2Manα1,3) Manβ1,4GlcNAcβ1,4GlcNAc-R to produce paucimannose Man3GlcNAc2 N-glycan. N-acetyl-d-glucosamine removal was inhibited by two N-acetylglucosaminidase inhibitors. Terminal GlcNAc was not released from [Manα1,6(Manα1,3)Manα1,6] (GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-R nor from the GlcNAcβ1,2Manα1,6Manβ- arm. These findings indicate that GLY-13 plays an important role in the synthesis of N-glycans by C. elegans and that therefore the worm should prove to be a suitable model for the study of the role of GnT I in nematode development.

This content is only available as a PDF.
You do not currently have access to this content.