N-Acetylglutamate (NAG) fulfils distinct biological roles in lower and higher organisms. In prokaryotes, lower eukaryotes and plants it is the first intermediate in the biosynthesis of arginine, whereas in ureotelic (excreting nitrogen mostly in the form of urea) vertebrates, it is an essential allosteric cofactor for carbamyl phosphate synthetase I (CPSI), the first enzyme of the urea cycle. The pathway that leads from glutamate to arginine in lower organisms employs eight steps, starting with the acetylation of glutamate to form NAG. In these species, NAG can be produced by two enzymic reactions: one catalysed by NAG synthase (NAGS) and the other by ornithine acetyltransferase (OAT). In ureotelic species, NAG is produced exclusively by NAGS. In lower organisms, NAGS is feedback-inhibited by l-arginine, whereas mammalian NAGS activity is significantly enhanced by this amino acid. The NAGS genes of bacteria, fungi and mammals are more diverse than other arginine-biosynthesis and urea-cycle genes. The evolutionary relationship between the distinctly different roles of NAG and its metabolism in lower and higher organisms remains to be determined. In humans, inherited NAGS deficiency is an autosomal recessive disorder causing hyperammonaemia and a phenotype similar to CPSI deficiency. Several mutations have been recently identified in the NAGS genes of families affected with this disorder.
Skip Nav Destination
Article navigation
Review Article|
June 01 2003
N-Acetylglutamate and its changing role through evolution
Ljubica CALDOVIC;
Ljubica CALDOVIC
Children's Research Institute, Children's National Medical Center, the George Washington University, 111 Michigan Ave NW, Washington, DC 20010, U.S.A.
Search for other works by this author on:
Mendel TUCHMAN
Mendel TUCHMAN
1
Children's Research Institute, Children's National Medical Center, the George Washington University, 111 Michigan Ave NW, Washington, DC 20010, U.S.A.
1To whom correspondence should be addressed (e-mail mtuchman@cnmc.org).
Search for other works by this author on:
Biochem J (2003) 372 (2): 279–290.
Article history
Received:
January 02 2003
Revision Received:
January 23 2003
Accepted:
March 13 2003
Accepted Manuscript online:
March 13 2003
Citation
Ljubica CALDOVIC, Mendel TUCHMAN; N-Acetylglutamate and its changing role through evolution. Biochem J 1 June 2003; 372 (2): 279–290. doi: https://doi.org/10.1042/bj20030002
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.