Flavocytochrome b2 (yeast l-lactate dehydrogenase) carries one FMN and one protohaem IX on each of its four subunits. The prosthetic groups are bound to separate domains, the haem domain (residues 1–99) and the flavin domain (residues 100–485), which interact for electron transfer between lactate-reduced FMN and haem b2; in vivo, the latter reduces cytochrome c. In the crystal structure, one haem domain out of two is mobile. Previously we have described a monoclonal antibody, raised against the tetramer, that only recognizes the native haem domain and prevents electron transfer between flavin and haem, while having no effect on flavin reduction by the substrate [Miles, Lederer and Lê (1998) Biochemistry 37, 3440–3448]. In order to understand the structural basis of the uncoupling between the domains, we proceeded to site-directed mutagenesis, so as to map the epitope on the surface of the haem domain. We analysed the effects of 14 mutations at 12 different positions, located mostly in the domain interface or at its edge; we also analysed the effect of replacing protohaem IX with its dimethyl ester. We used as criteria the antibody-mediated inhibition of cytochrome c reduction by flavocytochrome b2, competitive ELISA tests and surface plasmon resonance. We have thus defined a minimal epitope surface on the haem domain; it encompasses positions 63, 64, 65, 67, 69 and 70 and one or both haem propionates. When the haem and flavin domains are docked for electron transfer, the 65, 67 and 70 side chains, as well as the haem propionates, are excluded from solvent. The present results thus indicate that, when bound, the antibody acts as a wedge between the domains and constitutes a physical barrier to electron transfer.
Skip Nav Destination
Article navigation
Research Article|
July 01 2003
Epitope mapping for the monoclonal antibody that inhibits intramolecular electron transfer in flavocytochrome b2
K. H. Diêp LÊ
;
K. H. Diêp LÊ
Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR 9063, 91198 Gif-sur-Yvette Cedex, France
Search for other works by this author on:
Martine MAYER
;
Martine MAYER
Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR 9063, 91198 Gif-sur-Yvette Cedex, France
Search for other works by this author on:
Florence LEDERER
Florence LEDERER
1
Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR 9063, 91198 Gif-sur-Yvette Cedex, France
1To whom correspondence should be addressed (e-mail lederer@lebs.cnrs-gif.fr).
Search for other works by this author on:
Biochem J (2003) 373 (1): 115–123.
Article history
Received:
January 03 2003
Revision Received:
February 20 2003
Accepted:
March 19 2003
Accepted Manuscript online:
March 19 2003
Citation
K. H. Diêp LÊ, Martine MAYER, Florence LEDERER; Epitope mapping for the monoclonal antibody that inhibits intramolecular electron transfer in flavocytochrome b2. Biochem J 1 July 2003; 373 (1): 115–123. doi: https://doi.org/10.1042/bj20030024
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Cited By
Related Articles
Non-linear antigenic regions in epidermal growth factor (EGF) and transforming growth factor α (TGFα) studied by EGF–TGFα chimaeras
Biochem J (June,2000)
Conserved C-terminal residues within the lectin-like domain of LOX-1 are essential for oxidized low-density-lipoprotein binding
Biochem J (April,2001)
Characterizing monoclonal antibody epitopes by filtered gene fragment phage display
Biochem J (June,2005)