We have previously shown that ScN2a cells (scrapie-infected neuroblastoma N2a cells) express 2-fold- and 4-fold-increased levels of IR (insulin receptor) and IGF-1R (insulin-like growth factor-1 receptor) respectively. In addition, the IR α- and β-subunits are aberrantly processed, with apparent molecular masses of 128 and 85 kDa respectively, as compared with 136 and 95 kDa in uninfected N2a cells. Despite the 2-fold increase in IR protein, the number of 125I-insulin-binding sites was slightly decreased in ScN2a cells [Östlund, Lindegren, Pettersson and Bedecs (2001) Brain Res. 97, 161–170]. In order to determine the cellular localization of IR in ScN2a cells, surface biotinylation was performed, showing a correct IR trafficking and localization to the cell surface. The present study shows for the first time that neuroblastoma N2a cells express significant levels of IR–IGF-1R hybrid receptors, and in ScN2a cells the number of hybrid receptors was 2-fold higher than that found in N2a cells, potentially explaining the apparent loss of insulin-binding sites due to a lower affinity for insulin compared with the homotypic IR. Furthermore, the decreased molecular mass of IR subunits in ScN2a cells is not caused by altered phosphorylation or proteolytic processing, but rather by altered glycosylation. Enzymic deglycosylation of immunoprecipitated IR from N2a and ScN2a cells with endoglycosidase H, peptide N-glycosidase F and neuraminidase all resulted in subunits with increased electrophoretic mobility; however, the 8–10 kDa shift remained. Combined enzymic or chemical deglycosylation using anhydrous trifluoromethane sulphonic acid treatment ultimately showed that the IR α- and β-subunits from ScN2a cells are aberrantly glycosylated. The increased formation of IR–IGF-1R hybrids in ScN2a cells may be part of a neuroprotective response to prion infection. The degree and functional significance of aberrantly glycosylated proteins in ScN2a cells remain to be determined.

This content is only available as a PDF.
You do not currently have access to this content.