In response to growth factors, mTOR (mammalian target of rapamycin) has been identified as a central component of the signalling pathways that control the translational machinery and cell growth. Signalling through mTOR has also been shown to be necessary for the mechanical load-induced growth of cardiac and skeletal muscles. Although the mechanisms involved for mechanically induced activation of mTOR are not known, it has been suggested that activation of PI3K (phosphoinositide 3-kinase) and protein kinase B (Akt), via the release of locally acting growth factors, underlies this process. In the present study, we show that mechanically stimulating (passive stretch) the skeletal muscle ex vivo results in the activation of mTOR-dependent signalling events. The activation of mTOR-dependent signalling events was necessary for an increase in translational efficiency, demonstrating the physiological significance of this pathway. Using pharmacological inhibitors, we show that activation of mTOR-dependent signalling occurs through a PI3K-independent pathway. Consistent with these results, mechanically induced signalling through mTOR was not disrupted in muscles from Akt1−/− mice. In addition, ex vivo co-incubation experiments, along with in vitro conditioned-media experiments, demonstrate that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for the activation of the mTOR pathway. Taken together, our results demonstrate that mechanical stimuli can activate the mTOR pathway independent of PI3K/Akt1 and locally acting growth factors. Thus mechanical stimuli and growth factors provide distinct inputs through which mTOR co-ordinates an increase in the translational efficiency.
Skip Nav Destination
Article navigation
Research Article|
June 15 2004
Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism
Troy A. HORNBERGER;
Troy A. HORNBERGER
*School of Kinesiology, University of Illinois at Chicago, 901 W. Roosevelt, Chicago, IL 60608, U.S.A.
Search for other works by this author on:
Rudy STUPPARD;
Rudy STUPPARD
†Department of Radiology, University of Washington, Seattle, WA 98195, U.S.A.
Search for other works by this author on:
Kevin E. CONLEY;
Kevin E. CONLEY
†Department of Radiology, University of Washington, Seattle, WA 98195, U.S.A.
Search for other works by this author on:
Mark J. FEDELE;
Mark J. FEDELE
*School of Kinesiology, University of Illinois at Chicago, 901 W. Roosevelt, Chicago, IL 60608, U.S.A.
Search for other works by this author on:
Marta L. FIOROTTO;
Marta L. FIOROTTO
‡Department of Paediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX 77030, U.S.A.
Search for other works by this author on:
Eva R. CHIN;
Eva R. CHIN
§Pfizer Global Research and Development, Groton, CT 06340, U.S.A.
Search for other works by this author on:
Karyn A. ESSER
Karyn A. ESSER
1
*School of Kinesiology, University of Illinois at Chicago, 901 W. Roosevelt, Chicago, IL 60608, U.S.A.
1To whom correspondence should be addressed (e-mail [email protected]).
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
February 18 2004
Revision Received:
March 13 2004
Accepted:
March 19 2004
Accepted Manuscript online:
March 19 2004
Online ISSN: 1470-8728
Print ISSN: 0264-6021
The Biochemical Society, London ©2004
2004
Biochem J (2004) 380 (3): 795–804.
Article history
Received:
February 18 2004
Revision Received:
March 13 2004
Accepted:
March 19 2004
Accepted Manuscript online:
March 19 2004
Citation
Troy A. HORNBERGER, Rudy STUPPARD, Kevin E. CONLEY, Mark J. FEDELE, Marta L. FIOROTTO, Eva R. CHIN, Karyn A. ESSER; Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 15 June 2004; 380 (3): 795–804. doi: https://doi.org/10.1042/bj20040274
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.