Studies on the biochemical properties of very-large-size eukaryotic DNA polymerases have been limited by the difficulty in obtaining sufficient purified forms of each enzyme. Our aim was to determine and elucidate the biochemical properties of one such polymerase, pol ζ (DNA polymerase ζ) from Drosophila melanogaster (Dmpol ζ). Using an REV1 (UV-revertible gene 1) protein-affinity column, we have isolated the enzyme directly from Drosophila embryos. Completely purified Dmpol ζ was found to have a molecular mass of approx. 240 kDa, and to be sensitive to aphidicolin and resistant to ddTTP (2′,3′-dideoxythymidine-5-triphosphate) and N-ethylmaleimide. The enzyme has a preference for poly(dA)/oligo(dT)10:1 as a template primer and has high processivity for DNA synthesis. Moreover, Dmpol ζ showed significantly higher fidelity compared with Rattus norvegicus DNA polymerase, an error-prone DNA polymerase, in an M13 forward mutation assay. The activities of bypassing pyrimidine dimers and (6-4) photoproducts and extending from mismatched primer-template termini in (6-4) photoproduct by Dmpol ζ were not detected. Drosophila REV7 interacted with Dmpol ζ in vitro, but did not influence the DNA synthesis activity of Dmpol ζ. The present study is the first report about characterization of purified pol ζ from multicellular organisms, and the second concerning the characterization of yeast pol ζ.

You do not currently have access to this content.