Purified human mucins from different parts of the intestinal tract (ileum, cecum, transverse and sigmoid colon and rectum) were isolated from two individuals with blood group ALeb (A-Lewisb). After alkaline borohydride treatment the released oligosaccharides were structurally characterized by nano-ESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem MS) without prior fractionation or derivatization. More than 100 different oligosaccharides, with up to ten monosaccharide residues, were identified using this technique. Oligosaccharides based on core 3 structures, GlcNAc(β1-3)GalNAc (where GlcNAc is N-acetyl-D-glucosamine and GalNAc is N-acetylgalactosamine), were widely distributed in human intestinal mucins. Core 5 structures, GalNAc(α1-3)GalNAc, were also recovered in all fractions. Moreover, a comparison of the oligosaccharide repertoire, with respect to size, diversity and expression of glycans and terminal epitopes, showed a high level of mucin-specific glycosylation: highly fucosylated glycans, found specifically in the small intestine, were mainly based on core 4 structures, GlcNAc-(β1-3)[GlcNAc(β1-6)]GalNAc, whereas the sulpho-LeX determinant carrying core 2 glycans, Gal(β1-3)[GlcNAc(β1-6)]-GalNAc (where Gal is galactose), was recovered mainly in the distal colon. Blood group H and A antigenic determinants were present exclusively in the ileum and cecum, whereas blood group Sda/Cad related epitopes, GalNAc(β1-4)[NeuAc(α2-3)]Gal (where NeuAc is N-acetylneuraminate), were found to increase along the length of the colon. Our findings suggest that mucins create an enormous repertoire of potential binding sites for micro-organisms that could explain the regio-specific colonization of bacteria in the human intestinal tract.

You do not currently have access to this content.