Vascular relaxation to GTN (nitroglycerin) and other antianginal nitrovasodilators requires bioactivation of the drugs to NO or a related activator of sGC (soluble guanylate cyclase). Conversion of GTN into 1,2-GDN (1,2-glycerol dinitrate) and nitrite by mitochondrial ALDH2 (aldehyde dehydrogenase 2) may be an essential pathway of GTN bioactivation in blood vessels. In the present study, we characterized the profile of GTN biotransformation by purified human liver ALDH2 and rat liver mitochondria, and we used purified sGC as a sensitive detector of GTN bioactivity to examine whether ALDH2-catalysed nitrite formation is linked to sGC activation. In the presence of mitochondria, GTN activated sGC with an EC50 (half-maximally effective concentration) of 3.77±0.83 μM. The selective ALDH2 inhibitor, daidzin (0.1 mM), increased the EC50 of GTN to 7.47±0.93 μM. Lack of effect of the mitochondrial poisons, rotenone and myxothiazol, suggested that nitrite reduction by components of the respiratory chain is not essential to sGC activation. However, since co-incubation of sGC with purified ALDH2 led to significant stimulation of cGMP formation by GTN that was completely inhibited by 0.1 mM daidzin and NO scavengers, ALDH2 may convert GTN directly into NO or a related species. Studies with rat aortic rings suggested that ALDH2 contributes to GTN bioactivation and showed that maximal relaxation to GTN occurred at cGMP levels that were only 3.4% of the maximal levels obtained with NO. Comparison of sGC activation in the presence of mitochondria with cGMP accumulation in rat aorta revealed a slightly higher potency of GTN to activate sGC in vitro compared with blood vessels. Our results suggest that ALDH2 catalyses the mitochondrial bioactivation of GTN by the formation of a reactive NO-related intermediate that activates sGC. In addition, the previous conflicting notion of the existence of a high-affinity GTN-metabolizing pathway operating in intact blood vessels but not in tissue homogenates is explained.
Skip Nav Destination
Article navigation
February 2005
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkEditorial Board
Research Article|
January 24 2005
Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide
Alexander KOLLAU;
Alexander KOLLAU
*Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
Search for other works by this author on:
Alexandra HOFER;
Alexandra HOFER
*Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
Search for other works by this author on:
Michael RUSSWURM;
Michael RUSSWURM
†Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Search for other works by this author on:
Doris KOESLING;
Doris KOESLING
†Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Search for other works by this author on:
Wing Ming KEUNG;
Wing Ming KEUNG
‡Department of Pathology, Harvard Medical School, Boston, MA, U.S.A.
Search for other works by this author on:
Kurt SCHMIDT;
Kurt SCHMIDT
*Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
Search for other works by this author on:
Friedrich BRUNNER;
Friedrich BRUNNER
*Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
Search for other works by this author on:
Bernd MAYER
Bernd MAYER
1
*Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
1To whom correspondence should be addressed (email [email protected]).
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
August 09 2004
Revision Received:
September 06 2004
Accepted:
September 17 2004
Accepted Manuscript online:
September 17 2004
Online ISSN: 1470-8728
Print ISSN: 0264-6021
The Biochemical Society, London
2005
Biochem J (2005) 385 (3): 769–777.
Article history
Received:
August 09 2004
Revision Received:
September 06 2004
Accepted:
September 17 2004
Accepted Manuscript online:
September 17 2004
Citation
Alexander KOLLAU, Alexandra HOFER, Michael RUSSWURM, Doris KOESLING, Wing Ming KEUNG, Kurt SCHMIDT, Friedrich BRUNNER, Bernd MAYER; Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of nitroglycerin: evidence for the activation of purified soluble guanylate cyclase through direct formation of nitric oxide. Biochem J 1 February 2005; 385 (3): 769–777. doi: https://doi.org/10.1042/BJ20041354
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.