To examine the roles of active hypusinated eIF5A (eukaryotic translation initiation factor 5A) and polyamines in cell proliferation, mouse mammary carcinoma FM3A cells were treated with an inhibitor of deoxyhypusine synthase, GC7 (N1-guanyl-1, 7-diaminoheptane), or with an inhibitor of ornithine decarboxylase, DFMO (α-difluoromethylornithine), or with DFMO plus an inhibitor of spermine synthase, APCHA [N1-(3-aminopropyl)-cyclohexylamine]. Treatment with GC7 decreased the level of active eIF5A on day 1 without affecting cellular polyamine content, and inhibition of cell growth occurred from day 2. This delay reflects the fact that eIF5A was present in excess and was very stable in these cells. Treatment with DFMO or with DFMO plus APCHA inhibited cell growth on day 1. DFMO considerably decreased the levels of putrescine and spermidine, and the formation of active eIF5A began to decrease when the level of spermidine fell below 8 nmol/mg of protein after 12 h of incubation with DFMO. The combination of DFMO and APCHA markedly decreased the levels of putrescine and spermine and significantly decreased the level of spermidine, but did not affect the level of active eIF5A until day 3 when spermidine level decreased to 7 nmol/mg of protein. The results show that a decrease in either active eIF5A or polyamines inhibits cell growth, indicating that eIF5A and polyamines are independently involved in cell growth.

You do not currently have access to this content.