The ORPs (oxysterol-binding-protein-related proteins) constitute an enigmatic family of intracellular lipid receptors that are related through a shared lipid binding domain. Emerging evidence suggests that ORPs relate lipid metabolism to membrane transport. Current data imply that the yeast ORP Kes1p is a negative regulator of Golgi-derived vesicular transport mediated by the essential phosphatidylinositol/phosphatidylcholine transfer protein Sec14p. Inactivation of Kes1p function allows restoration of growth and vesicular transport in cells lacking Sec14p function, and Kes1p function in this regard can be complemented by human ORP1S (ORP1 short). Recent studies have determined that Kes1p and ORP1S both bind phospholipids as ligands. To explore the function of distinct linear segments of ORP1S in phospholipid binding and vesicular transport regulation, we generated a series of 15 open reading frames coding for diagnostic regions within ORP1S. Purified versions of these ORP1S deletion proteins were characterized in vitro, and allowed the identification of a nominal phospholipid binding region. The in vitro analysis was interpreted in the context of in vivo growth and vesicle transport assays for members of the ORP1S deletion set. The results determined that the phospholipid binding domain per se was insufficient for inhibition of vesicular transport by ORP1S, and that transport of carboxypeptidase Y and invertase from the Golgi may be regulated differentially by specific regions of ORP1S/Kes1p.

You do not currently have access to this content.