Human obesity is a global epidemic, which causes a rapidly increased frequency of diabetes and cardiovascular disease. One reason for obesity is the ready availability of refined food products with high caloric density, an evolutionarily new event, which makes over-consumption of food inevitable. Fat is a food product with high caloric density. The mechanism for regulation of fat intake has therefore been studied to a great extent. Such studies have shown that, as long as fat stays in the intestine, satiety is promoted. This occurs through the fat-released peptide hormones, the best known being CCK (cholecystokinin), which is released by fatty acids. Hence, retarded fat digestion with prolonged time for delivery of fatty acids promotes satiety. Pancreatic lipase, together with its protein cofactor, co-lipase, is the main enzymatic system responsible for intestinal fat digestion. We found that biological membranes, isolated from plants, animals or bacteria, inhibit the lipase/co-lipase-catalysed hydrolysis of triacylglycerols even in the presence of bile salt. We propose that the inhibition is due to binding of lipase/co-lipase to the membranes and adsorption of the membranes to the aqueous/triacylglycerol interface, thereby hindering lipase/co-lipase from acting on its lipid substrate. We also found that chloroplast membranes (thylakoids), when added to refined food, suppressed food intake in rats, lowered blood lipids and raised the satiety hormones, CCK and enterostatin. Consequently, the mechanism for satiety seems to be retardation of fat digestion allowing the fat products to stay longer in the intestine.
Skip Nav Destination
Article navigation
February 2007
- Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkEditorial Board
Research Article|
January 12 2007
Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase
Per-Åke Albertsson;
Per-Åke Albertsson
*Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
Search for other works by this author on:
Rickard Köhnke;
Rickard Köhnke
1
†Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
Search for other works by this author on:
Sinan C. Emek;
Sinan C. Emek
1
*Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
Search for other works by this author on:
Jie Mei;
Jie Mei
†Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
Search for other works by this author on:
Jens F. Rehfeld;
Jens F. Rehfeld
‡Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
Search for other works by this author on:
Hans-Erik Åkerlund;
Hans-Erik Åkerlund
*Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
Search for other works by this author on:
Charlotte Erlanson-Albertsson
Charlotte Erlanson-Albertsson
2
†Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
2To whom correspondence should be addressed (email charlotte.erlanson-albertsson@med.lu.se).
Search for other works by this author on:
Biochem J (2007) 401 (3): 727–733.
Article history
Received:
September 26 2006
Revision Received:
October 13 2006
Accepted:
October 17 2006
Accepted Manuscript online:
October 17 2006
Connected Content
A correction has been published:
Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase
Citation
Per-Åke Albertsson, Rickard Köhnke, Sinan C. Emek, Jie Mei, Jens F. Rehfeld, Hans-Erik Åkerlund, Charlotte Erlanson-Albertsson; Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase. Biochem J 1 February 2007; 401 (3): 727–733. doi: https://doi.org/10.1042/BJ20061463
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.