In the present study, we report the development of a sensitive and selective assay based on LC (liquid chromatography)–MS/MS (tandem MS) to simultaneously measure N7-MeG (N7-methylguanine) and N7-EtG (N7-ethylguanine) in DNA hydrolysates. With the use of isotope internal standards (15N5-N7-MeG and 15N5-N7-EtG) and on-line SPE (solid-phase extraction), the detection limit of this method was estimated as 0.42 fmol and 0.17 fmol for N7-MeG and N7-EtG respectively. The high sensitivity achieved here makes this method applicable to small experimental animals. This method was applied to measure N7-alkylguanines in liver DNA from mosquito fish (Gambusia affinis) that were exposed to NDMA (N-nitrosodimethylamine) and NDEA (N-nitrosodiethylamine) alone or their combination over a wide range of concentrations (1–100 mg/l). Results showed that the background level of N7-MeG in liver of control fish was 7.89±1.38 μmol/mol of guanine, while N7-EtG was detectable in most of the control fish with a range of 0.05–0.19 μmol/mol of guanine. N7-MeG and N7-EtG were significantly induced by NDMA and NDEA respectively, at a concentration as low as 1 mg/l and increased in a dose-dependent manner. Taken together, this LC-MS/MS assay provides the sensitivity and high throughput required to evaluate the extent of alkylated DNA lesions in small animal models of cancer induced by alkylating agents.

You do not currently have access to this content.