Recent results suggest a role for topoIIα (topoisomerase IIα) in the fine-tuning of mitotic entry. Mitotic entry is accompanied by the formation of specific phosphoepitopes such as MPM-2 (mitotic protein monoclonal 2) that are believed to control mitotic processes. Surprisingly, the MPM-2 kinase of topoIIα was identified as protein kinase CK2, otherwise known as a constitutive interphase kinase. This suggested the existence of alternative pathways for the creation of mitotic phosphoepitopes, different from the classical pathway where the substrate is phosphorylated by a mitotic kinase. In the present paper, we report that topoIIα is co-localized with both CK2 and PP2A (protein phosphatase 2A) during interphase. Simultaneous incubation of purified topoIIα with CK2 and PP2A had minimal influence on the total phosphorylation levels of topoIIα, but resulted in complete disappearance of the MPM-2 phosphoepitope owing to opposite sequence preferences of CK2 and PP2A. Accordingly, short-term exposure of interphase cells to okadaic acid, a selective PP2A inhibitor, was accompanied by the specific appearance of the MPM-2 phosphoepitope on topoIIα. During early mitosis, PP2A was translocated from the nucleus, while CK2 remained in the nucleus until pro-metaphase thus permitting the formation of the MPM-2 phosphoepitope. These results underline the importance of protein phosphatases as an alternative way of creating cell-cycle-specific phosphoepitopes.

You do not currently have access to this content.