Vasopressins and oxytocins are homologous, ubiquitous and multifunctional peptides present in animals. Conopressins are vasopressin/oxytocin-related peptides that have been found in the venom of cone snails, a genus of marine predatory molluscs that envenom their prey with a complex mixture of neuroactive peptides. In the present paper, we report the purification and characterization of a unique conopressin isolated from the venom of Conus villepinii, a vermivorous cone snail species from the western Atlantic Ocean. This novel peptide, designated γ-conopressin-vil, has the sequence CLIQDCPγG* (γ is γ-carboxyglutamate and * is C-terminal amidation). The unique feature of this vasopressin/oxytocin-like peptide is that the eighth residue is γ-carboxyglutamate instead of a neutral or basic residue; therefore it could not be directly classified into either the vasopressin or the oxytocin peptide families. Nano-NMR spectroscopy of the peptide isolated directly from the cone snails revealed that the native γ-conopressin-vil undergoes structural changes in the presence of calcium. This suggests that the peptide binds calcium, and the calcium-binding process is mediated by the γ-carboxyglutamate residue. However, the negatively charged residues in the sequence of γ-conopressin-vil may mediate calcium binding by a novel mechanism not observed in other peptides of this family.

You do not currently have access to this content.