Cox17, a copper chaperone for cytochrome-c oxidase, is an essential and highly conserved protein in eukaryotic organisms. Yeast and mammalian Cox17 share six conserved cysteine residues, which are involved in complex redox reactions as well as in metal binding and transfer. Mammalian Cox17 exists in three oxidative states, each characterized by distinct metal-binding properties: fully reduced mammalian Cox170S–S binds co-operatively to four Cu+; Cox172S–S, with two disulfide bridges, binds to one of either Cu+ or Zn2+; and Cox173SS, with three disulfide bridges, does not bind to any metal ions. The Em (midpoint redox potential) values for two redox couples of Cox17, Cox173SS↔Cox172S–S (Em1) and Cox172S–S↔Cox170S–S (Em2), were determined to be −197 mV and −340 mV respectively. The data indicate that an equilibrium exists in the cytosol between Cox170S-S and Cox172S–S, which is slightly shifted towards Cox170S-S. In the IMS (mitochondrial intermembrane space), the equilibrium is shifted towards Cox172S–S, enabling retention of Cox172S–S in the IMS and leading to the formation of a biologically competent form of the Cox17 protein, Cox172S–S, capable of copper transfer to the copper chaperone Sco1. XAS (X-ray absorption spectroscopy) determined that Cu4Cox17 contains a Cu4S6-type copper–thiolate cluster, which may provide safe storage of an excess of copper ions.

You do not currently have access to this content.