ASC-2 (activating signal co-integrator-2) is a transcriptional co-activator that mediates the transactivation of NRs (nuclear receptors) via direct interactions with these receptors. ASC-2 contains two separate NR-interaction domains harbouring a core signature motif, LXXLL (where X is any amino acid), named the NR box. Although the first NR box (NR box-1) of ASC-2 interacts with many different NRs, the second NR box (NR box-2) specifically interacts with only LXR (liver X receptor), whose transactivation in vivo requires heterodimerization with RXR (retinoid X receptor). Interestingly, RXR has been shown to enhance the LXR transactivation, even in the absence of LXR ligand via a unique mechanism of allosteric regulation. In the present study we demonstrate that LXR binding to an ASC-2 fragment containing NR box-2 (Co4aN) is enhanced by RXR and even further by liganded RXR. We also identified specific residues in Co4aN involved in its interaction with LXR that were also required for the ASC-2-mediated transactivation of LXR in mammalian cells. Using these mutants, we found that the Co4aN–LXR interaction surface is not altered by the presence of RXR and RXR ligand and that the Ser1490 residue is the critical determinant for the LXR-specific interaction of Co4aN. Notably the NR box-2, but not the NR box-1, is essential for ASC-2-mediated transactivation of LXR in vivo and for the interaction between LXR–RXR and ASC-2 in vitro. These results indicate that RXR does not interact directly with NR box-1 of ASC-2, but functions as an allosteric activator of LXR binding to NR box-2 of ASC-2.

You do not currently have access to this content.