In the present study, effects of increased IP3K-A [Ins(1,4,5)P3 3-kinase-A] expression were analysed. H1299 cells overexpressing IP3K-A formed branching protrusions, and under three-dimensional culture conditions, they exhibited a motile fibroblast-like morphology. They lost the ability to form actin stress fibres and showed increased invasive migration in vitro. Furthermore, expression levels of the mesenchymal marker proteins vimentin and N-cadherin were increased. The enzymatic function of IP3K-A is to phosphorylate the calcium-mobilizing second messenger Ins(1,4,5)P3 to (Ins(1,3,4,5)P4. Accordingly, cells overexpressing IP3K-A showed reduced calcium release and altered concentrations of InsPs, with decreasing concentrations of Ins(1,4,5)P3, InsP6 and Ins(1,2,3,4,5)P5, and increasing concentrations of Ins(1,3,4,5)P4. However, IP3K-A-induced effects on cell morphology do not seem to be dependent on enzyme activity, since a protein devoid of enzyme activity also induced the formation of branching protrusions. Therefore we propose that the morphological changes induced by IP3K-A are mediated by non-enzymatic activities of the protein.

You do not currently have access to this content.