In the present study, we examined the role of PLCδ1 (phospholipase C δ1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLCδ1, but not PLCβ3 or PLCϵ, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [3H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G0/G1-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G1-phase but delayed entry into S-phase. Consistent with these findings, G1 cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G1-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E–CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLCδ1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLCδ1 in cell-cycle progression from G1-to-S-phase through regulation of cyclin E–CDK2 activity and p27 levels.

You do not currently have access to this content.