HBV (hepatitis B virus) is a primary cause of chronic liver disease, which frequently results in hepatitis, cirrhosis and ultimately HCC (hepatocellular carcinoma). Recently, we showed that HBx (HBV protein X) expression induces lipid accumulation in hepatic cells mediated by the induction of SREBP1 (sterol-regulatory-element-binding protein 1), a key regulator of lipogenic genes in the liver. However, the molecular mechanisms by which HBx increases SREBP1 expression and transactivation remain to be clearly elucidated. In the present study, we demonstrated that HBx interacts with LXRα (liver X receptor α) and enhances the binding of LXRα to LXRE (LXR-response element), thereby resulting in the up-regulation of SREBP1 and FAS (fatty acid synthase) in the presence or absence of the LXR agonist T0901317 in the hepatic cells and HBx-transgenic mice. Furthermore, HBx also augments the ability to recruit ASC2 (activating signal co-integrator 2), a transcriptional co-activator that controls liver lipid metabolic pathways, to the LXRE with LXRα. These studies place LXRα in a key position within the HBx-induced lipogenic pathways, and suggest a molecular mechanism through which HBV infection can stimulate the SREBP1-mediated control of hepatic lipid accumulation.

You do not currently have access to this content.