SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser422 in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser422. Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser422, under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity.
Skip Nav Destination
Follow us on Twitter @Biochem_Journal
Article navigation
December 2008
-
Cover Image
Cover Image
- PDF Icon PDF LinkFront Matter
- PDF Icon PDF LinkTable of Contents
- PDF Icon PDF LinkEditorial Board
Research Article|
November 26 2008
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
Juan M. García-Martínez;
Juan M. García-Martínez
1
1MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.
1To whom correspondence should be addressed (email [email protected]).
Search for other works by this author on:
Dario R. Alessi
Dario R. Alessi
1MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.
Search for other works by this author on:
Publisher: Portland Press Ltd
Received:
August 15 2008
Revision Received:
October 06 2008
Accepted:
October 17 2008
Accepted Manuscript online:
October 17 2008
Online ISSN: 1470-8728
Print ISSN: 0264-6021
© The Authors Journal compilation © 2008 Biochemical Society
2008
Biochem J (2008) 416 (3): 375–385.
Article history
Received:
August 15 2008
Revision Received:
October 06 2008
Accepted:
October 17 2008
Accepted Manuscript online:
October 17 2008
Connected Content
A correction has been published:
mTORC2 is the hydrophobic motif kinase for SGK1
Citation
Juan M. García-Martínez, Dario R. Alessi; mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 15 December 2008; 416 (3): 375–385. doi: https://doi.org/10.1042/BJ20081668
Download citation file:
Sign in
Don't already have an account? Register
Sign in to your personal account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Biochemical Society Member Sign in
Sign InSign in via your Institution
Sign in via your InstitutionGet Access To This Article
Follow us on Twitter @Biochem_Journal
Open Access for all
We offer compliant routes for all authors from 2025. With library support, there will be no author nor reader charges in 5 journals. Check here |
View past webinars > |