We recently reported that the dual-specificity AKAP (A-kinaseanchoring protein) Ezrin targets type I PKA (protein kinase A) to the vicinity of the TCR (T-cell receptor) in T-cells and, together with PAG (phosphoprotein associated with glycosphingolipid-enriched membrane microdomains) and EBP50 [ERM (Ezrin/Radixin/Moesin)-binding phosphoprotein 50], forms a scaffold that positions PKA close to its substrate, Csk (C-terminal Src kinase). This complex is important for controlling the activation state of T-cells. Ezrin binds the adaptor protein EBP50, which again contacts PAG. In the present study, we show that Ezrin and EBP50 interact with high affinity (KD=58±7 nM). A peptide corresponding to the EB (Ezrin-binding) region in EBP50 (EBP50pep) was used to further characterize the binding kinetics and compete the Ezrin–EBP50 interaction by various methods in vitro. Importantly, loading T-cells with EBP50pep delocalized Ezrin, but not EBP50. Furthermore, disruption of this complex interfered with cAMP modulation of T-cell activation, which is seen as a reversal of cAMP-mediated inhibition of IL-2 (interleukin 2) production, demonstrating an important role of EBP50 in this complex. In summary, both the biochemical and functional data indicate that targeting the Ezrin–EBP interaction could be a novel and potent strategy for immunomodulation.

You do not currently have access to this content.