The compatible solute ABC (ATP-binding cassette) transporters are indispensable for acquiring a variety of compatible solutes under osmotic stress in Bacillus subtilis. The substrate-binding protein OpuCC (Opu is osmoprotectant uptake) of the ABC transporter OpuC can recognize a broad spectrum of compatible solutes, compared with its 70% sequence-identical paralogue OpuBC that can solely bind choline. To explore the structural basis of this difference of substrate specificity, we determined crystal structures of OpuCC in the apo-form and in complex with carnitine, glycine betaine, choline and ectoine respectively. OpuCC is composed of two α/β/α globular sandwich domains linked by two hinge regions, with a substrate-binding pocket located at the interdomain cleft. Upon substrate binding, the two domains shift towards each other to trap the substrate. Comparative structural analysis revealed a plastic pocket that fits various compatible solutes, which attributes the multiple-substrate binding property to OpuCC. This plasticity is a gain-of-function via a single-residue mutation of Thr94 in OpuCC compared with Asp96 in OpuBC.

You do not currently have access to this content.