DLK (dual leucine zipper-bearing kinase) is a key regulator of development, cell differentiation and apoptosis. Interestingly, recent studies have shown that DLK expression is up-regulated in 3T3-L1 cells induced to differentiate into adipocytes and that DLK knockdown impairs the expression of PPARγ (peroxisome-proliferator-activated receptor γ), a master regulator of adipogenesis. Because the PPARγ agonist rosiglitazone was found to increase DLK expression in 3T3-L1 cells, we hypothesized that PPARγ is required for the transcriptional activation of the DLK gene. To test this hypothesis, we first examined the effects of pharmacological inhibition or shRNA (small-hairpin RNA)-mediated depletion of PPARγ on DLK accumulation in 3T3-L1 cells undergoing differentiation. In addition to blocking adipocyte conversion of 3T3-L1 cells, inhibition of PPARγ suppressed DLK expression at both the mRNA and protein levels. Moreover, supporting a role for PPARγ in DLK regulation, two potential PPARγ-binding sites identified by bioinformatic tools at positions −611 and −767 upstream of the DLK gene transcriptional start site were shown by electrophoretic mobility-shift assay and chromatin immunoprecipitation to bind PPARγ and its essential heterodimer partner retinoid X receptor as differentiation proceeds. Collectively, these results show that DLK is a novel transcriptional target of PPARγ with functional PPARγ-binding sites in its promoter.

You do not currently have access to this content.