The hydrolysis of ATP drives virtually all of the energy-requiring processes in living cells. A prerequisite of living cells is that the concentration of ATP needs to be maintained at sufficiently high levels to sustain essential cellular functions. In eukaryotic cells, the AMPK (AMP-activated protein kinase) cascade is one of the systems that have evolved to ensure that energy homoeostasis is maintained. AMPK is activated in response to a fall in ATP, and recent studies have suggested that ADP plays an important role in regulating AMPK. Once activated, AMPK phosphorylates a broad range of downstream targets, resulting in the overall effect of increasing ATP-producing pathways whilst decreasing ATP-utilizing pathways. Disturbances in energy homoeostasis underlie a number of disease states in humans, e.g. Type 2 diabetes, obesity and cancer. Reflecting its key role in energy metabolism, AMPK has emerged as a potential therapeutic target. In the present review we examine the recent progress aimed at understanding the regulation of AMPK and discuss some of the latest developments that have emerged in key areas of human physiology where AMPK is thought to play an important role.

You do not currently have access to this content.