Type I transmembrane peptides acquire N-linked glycans during and after protein synthesis to facilitate anterograde trafficking through the secretory pathway. Mutations in N-glycosylation consensus sites (NXT and NXS, where X≠P) that alter the kinetics of the initial N-glycan attachment have been associated with cardiac arrhythmias; however, the molecular determinants that define co- and post-translational consensus sites in proteins are not known. In the present study, we identified co- and post-translational consensus sites in the KCNE family of K+ channel regulatory subunits to uncover three determinants that favour co-translational N-glycosylation kinetics of type I transmembrane peptides which lack a cleavable signal sequence: threonine-containing consensus sites (NXT), multiple N-terminal consensus sites and long C-termini. The identification of these three molecular determinants now makes it possible to predict co- and post-translational consensus sites in type I transmembrane peptides.

You do not currently have access to this content.