Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66′ homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of 15N-labeled RT216 — a construct that includes the fingers and most of the palm domains. These studies are consistent with the conclusion that the p66 monomer exists as a spring-loaded complex. Initial dissociation of the fingers/palm : connection complex allows the fingers/palm to adopt an alternate, more stable structure, reducing the rate of reassociation and facilitating subsequent maturation steps. One of the drivers for an initial extension of the fingers/palm domains is identified as a straightening of helix E relative to its conformation in the monomer by eliminating a bend of ∼50° near residue Phe160. NMR and circular dichroism data also are consistent with the conclusion that a hydrophobic surface of palm domain that becomes exposed after the initial dissociation, as well as the intrinsic conformational preferences of the palm domain C-terminal segment, facilitates the formation of the β-sheet structure that is unique to the active polymerase subunit. Spectral comparisons based on 15N-labeled constructs are all consistent with previous structural conclusions based on studies of 13C-methyl-labeled constructs.

You do not currently have access to this content.