Abstract

The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.

You do not currently have access to this content.