Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.

You do not currently have access to this content.